DEPARTMENT OF COMPUTER SCIENCE

B. Sc. (Computer Science)

Programme Outcomes

After successfully completing **B. Sc. (Computer Science)** Programme students will be able to:

- PO1: Use creativity, critical thinking, and analysis and research skills to solve theoretical and real-world problems in computer science
- PO2: Work effectively both individually and as member of team.
- PO3: Discuss software development fundamentals, including programming, data structures, algorithms and complexity.
- PO4: Illustrate the concepts of systems fundamentals, including architectures and organization, operating systems, networking and communication.
- PO5: Gain the knowledge about software engineering fundamentals, including software analysis and design, evaluation and testing, and software engineering processes.
- PO6: Communicate effectively for different purposes and in different situations.
- PO7: Gain self-discipline in everyday aspects of life and work.
- PO8: Describe mathematics fundamentals, including discrete structures, statistics and calculus.
- PO9: Illustrate the concepts of Microprocessors and microcontrollers.
- PO10: Make use of fundamentals of Application, including information management and **intelligent** applications.

Programme Specific Outcomes

After successfully completing **B. Sc. (Computer Science)** Programme students will

- PSO1: Apply knowledge of computing and mathematics appropriate to the discipline
- PSO2: Develop problem-solving abilities using computer.
- PSO3: Design the application using programming languages.
- PSO4: Ability to understand the principles and development methodologies of computer systems.

Course Outcomes

F. Y. B. Sc. (Computer Science)

Course (CS-101): Problem solving using Computer and C-Programming

- CO1: List the flow chart and algorithm for given problem;
- CO2: Discuss the programming language tools and history of C programming;
- CO3: Define C Tokens like keywords, identifiers and operators;
- CO4: Explain input, output, conditional and iterative statements in C programming;
- CO5: Interpret C programs using array and functions;
- CO6: Explain string and pointer concepts of C programming;
- CO7: Illustrate user defined data types including structures and unions to solve the problems;
- CO8: Discuss command line arguments and files handling in C programming.

Course (CS-102): File Organization and Fundamental of Databases

After successfully completing this course, students will be able to:

- CO1: Define the suitable Heap, Sorted, Indexed, Hashed File Organization technique;
- CO2: Express Relational, Hierarchical and Network Data Model and structure of Database Management System;
- CO3: Discuss the conceptual modelling tools like E-R diagram and Relational Data Model;
- CO4: Explain the Integrity Constraints on a database schema;
- CO5: Describe Relational Algebraic operations and construct the queries to write Relational Algebra expression;
- CO6: Illustrate the basics of Structured Query Language and construct queries using SQL;
- CO7: Explain the basics of query evaluation techniques and query optimization;
- CO8: Explain the concepts of Functional Dependency and design the database;
- CO9: Interpret the concepts of Normalization and Normal Forms used to improve database design;

Course (CS-103): Computer Science Practical Paper- I

After successfully completing this course, students will be able to:

- CO1: List the basic UNIX general purpose commands, data types and Operators in C-Language;
- CO2: Use the decision making statements like if, if-else, nested if and switch case in C program;
- CO3: Demonstrate while, do-while, for, nested loops of C-Program;
- CO4: Apply standard library functions in menu driven program in C- Language;
- CO5: Solve C Program using array, pointer, string and functions;
- CO6: Illustrate C-program using structure and Union;
- CO7: Discuss the concepts of file handling command line arguments in C-Programming.

Course (CS-104): Computer Science Practical Paper- II

After successfully completing this course, students will be able to:

- CO1: Explain the HTML pages using lists, table and hyperlinks;
- CO2: Apply advanced features like CSS and its types on web pages;
- CO3: Demonstrate simple forms layout with HTML;
- CO4: Solve a small case study to create simple application;
- CO5: Define a database schema for a given problem domain;
- CO6: Interpret the integrity constraints on a database;
- CO7: Use of SQL DDL/DML commands to perform query on a database.

S. Y. B. Sc. (Computer Science)

Course (CS-211): Data Structures Using 'C'

- CO1: Discuss fundamental concepts of Data Structure, abstract data type, and algorithm analysis;
- CO2: Summarize different searching and sorting techniques using array;

- CO3: Describe linear data structure Stack and its application;
- CO4: Explain linear data structure Queue and its types (Linear Queue, Circular Queue, and Priority Queue);
- CO5: Summarize different types of Linked List (singly linked list, doubly linked list, linear and circular linked list);
- CO6: Discuss non-linear data structure Tree using operations like searching, insertion, deletion, and traversing mechanism;
- CO7: Explain non-linear data structure Graph using operations like traversing mechanism;

Course (CS-221): Object Oriented Concepts using C++

After successfully completing this course, students will be able to:

- CO1: depict the applications and need of Object Oriented Programming language;
- CO2: Discuss basic concepts of C++ programming language;
- CO3: Describe the concepts of classes, objects, member function, constructors and destructor;
- CO4: Explain the need of operator overloading, inheritance, polymorphism, and virtual functions;
- CO5: Explain managing input- output, and file in C++;
- CO6: Explain exceptions handling and templates in C++.

Course (CS-223): Data structures Practical and C++ Practical (Lab Course- I)

After successfully completing this course, students will be able to:

- CO1: Use different searching and sorting methods for basic data structures programs;
- CO2: Solve simple mathematical problems using data structure;
- CO3: Implement various data structures viz. Stack, Queues and Linked Lists;
- CO4: Implement complex data structures like trees and graphs;
- CO5: Demonstrate programs by using basic object oriented concepts in C++;
- CO6: Apply to overload functions and Operators in C++;
- CO7: Illustrate programs by applying the object oriented concepts such as (Inheritance, Virtual Function.)
- CO8: Apply of file handling in C++ programs.

Course CS-212: Relational Database Management System

- CO1: Recall the integrity constraints on a database using RDBMS;
- CO2: Explain the concepts of stored procedures, stored functions, and cursors triggers in PL/PGSQL programming language;
- CO3: Explain the concepts of transactions processing, concurrency control and recovery;
- CO4: Interpret the concurrency control techniques;
- CO5: Describe the concepts of crash recovery;
- CO6: Discuss the data security methods for database protection;
- CO7: Summarize the knowledge about client server architecture.

Course CS-222: Software Engineering

After successfully completing this course, students will be able to:

- CO1: Explain the characteristics of system, elements of system, and types of system;
- CO2: Discuss software, its application domain and, software engineering principles;
- CO3: Describe the activities of system development life cycle;
- CO4: Illustrate different software process models used in practice;
- CO5: Summarize the requirement engineering tasks;
- CO6: Discuss the methods used to build structure analysis model.

Course CS-224: Database Practical's and Mini Project using Software Engineering

Techniques (Lab Course- II)

After successfully completing this course, students will be able to:

- CO1: Solve the simple and nested queries using PL/PGSQL;
- CO2: Demonstrate stored functions, cursors, triggers and views;
- CO3: Illustrate queries using loops and conditional statements;
- CO4: Use error and exception handling methods;
- CO5: Describe the software engineering processes such as gathering data and functional requirements in the software project;
- CO6: Apply feasibility study techniques for the software project;
- CO7: Discuss the existing system, and explain the proposed system;
- CO8: Determine the entities, attributes and draw E-R diagram.

T. Y. B. Sc. (Computer Science)

Course (CS-331): System Programming and Operating Systems-I

After successfully completing this course, students will be able to:

- CO1: Describe the different types of Programming Environment, purpose of editors and types of editors;
- CO2: Discuss the data structures of Assembler;
- CO3: Explain Data Structures of Macro pre-processor;
- CO4: Illustrate the concepts of Interpreter, Compiler Linker and Loader
- CO5: Explain types of Debugger and demonstrate how to debug the program;
- CO6: Describe the Operating system as system software and types of system calls.

Course (CS-341): System Programming and Operating Systems-II

After successfully completing this course, students will be able to:

- CO1: Discuss the operating system structure and issues related to process management;
- CO2: contrast the different CPU scheduling algorithms;
- CO3: Explain the multithreading models and synchronization techniques;
- CO4: Interpret the different strategies of deadlocks;
- CO5: Describe the different issues related to memory management;
- CO6: Discuss file access methods, directory structure and file allocation methods.

Course (CS-347): System Programming and Operating Systems Practical

After successfully completing this course, students will be able to:

CO1: Perform the different Line editor commands;

- CO2: Illustrate the SMACO program;
- CO3: Demonstrate the concepts of Assembler and Macro;
- CO4: Use concept DFA to check particular Language accepts or not;
- CO5: Illustrate different the shell commands;
- CO6: Perform the different CPU scheduling algorithms;
- CO7: Demonstrate deadlock avoidance algorithm to find the Safe Sequence;
- CO8: Use the different page replacement algorithms to find page fault.

Course (CS-331): Theoretical Computer Science And Compiler Construction – I

After successfully completing this course, students will be able to:

- CO1: Explain how to generate formal language & regular expressions;
- CO2: Express concepts of finite automata;
- CO3: Describe knowledge of regular languages;
- CO4: Discuss context free languages & different types of grammar;
- CO5: Explain concepts of pushdown automata;
- CO6: Summarize concepts of Turing machine.

Course (CS-342): Theoretical Computer Science and Compiler Construction – II

After successfully completing this course, students will be able to:

- CO1: Explain phases of compiler & Lexical analyzer;
- CO2: Illustrate types of parsers;
- CO3: Express use of YACC tool;
- CO4: Describe Syntax Directed Definitions & its applications;
- CO5: Discuss memory allocation in block structure languages, code optimization & code generation;

Course (CS-333): Computer networks –I

After successfully completing this course, students will be able to:

- CO1: Define goals and importance of computer networks;
- CO2: Demonstrate network infrastructure according to various topologies and network type (LAN. WAN and MAN;
- CO3: Describe OSI reference model and TCP/IP model;
- CO4: Explain various hardware and software used in network design;
- CO5: Discuss various terminologies and protocols used in physical layer;
- CO6: Discuss various design issues and various protocols used in data link layer.

Course (CS-343): Computer networks –II

After successfully completing this course, students will be able to:

- CO1: Define Wired LAN (Standard Ethernet MAC Layer);
- CO2: Discuss standards of IEEE 802.11 architecture and Bluetooth architecture used in Wireless LAN;
- CO3: Explain IPV4 protocol used in the network layer;
- CO4: Explain protocols- ARP, UDP and TCP ;
- CO5: Discuss WWW architecture, E-mail and HTTP
- CO6: Illustrate Cryptography and firewall used in network security.

Course (CS-334): Internet Programming- I

After successfully completing this course, students will be able to:

CO1: Interpret fundamental concept of web techniques;

- CO2: Discuss concept of user define function & predefine functions of strings;
- CO3: Explain types of array & predefine function of array;
- CO4: Illustrate object oriented concepts in PHP script;
- CO5: Describe file & directory handling operation & predefine function of file & directory;
- CO6: Explain the database enable web pages.

Course (CS-344): Internet Programming-II

After successfully completing this course, students will be able to:

- CO1: Explain content used in web technology;
- CO2: Discuss PHP framework & email handling using PHP;
- CO3: Explain XML programs, its advantages & different XML parser;
- CO4: Interpret the concept of JavaScript for web designing;
- CO5: Describe functioning of Ajax model.

Course (CS-348): Internet Programming, Networking Practical and Project

After successfully completing this course, students will be able to:

- CO1: Illustrate a form to implement functions and predefine functions;
- CO2: Demonstrate the array concepts and its predefine functions;
- CO3: Apply the predefine functions of files and directories;
- CO4: Solve problems using object oriented concept;
- CO5: Demonstrate database enabled web pages using PostgreSQL;
- CO6: Apply JavaScript in web pages;
- CO7: Demonstrate dynamic web pages by using Ajax;
- CO8: Illustrate various concepts of web development in project;
- CO9: Demonstrate various networking commands in Unix.

Course (CS-335): Programming in Java-I

After successfully completing this course, students will be able to:

- CO1: Define simple java programs using data types, final variable and arrays;
- CO2: Explain classes using constructor and array of objects;
- CO3: perform java programs using classes and objects;
- CO4: Illustrate the concept of inheritance and interfaces;
- CO5: implements exception handling techniques in java programs;
- CO6: Demonstrate GUI using Swing and AWT (Abstract Window Toolkit) methods;
- CO7: Interpret basic applet using java.

Course (CS-345): Programming in Java-II

- CO1: Explain programs using java collection API as well as java Standard Library;
- CO2: Discuss GUI Applications with JDBC (Java Database Connectivity);
- CO3: Define concept of Servlet;
- CO4: Interpret simple Java Server Pages (JSP) Application;
- CO5: Describe multithreading using java;
- CO6: Demonstrate simple application for client and server communication;
- CO7: Illustrate java concept for solving simple business problem.

Course (CS-348): Programming in Java Practical

After successfully completing this course, students will be able to:

- CO1: Define simple classes using IDE Eclipse;
- CO2: Explain examples of classes using array of objects and packages;
- CO3: implement inheritance and interfaces in java;
- CO4: Solve problems using exception handling mechanism in java;
- CO5: perform Input/output operations using console and files;
- CO6: Apply AWT and Swing to create GUI in java;
- CO7: Execute queries on tables using JDBC (Java Database Connectivity);
- CO8: Define and execute simple servlet program;
- CO9: Illustrate the JSP (Java Server Pages) programs;
- CO10: Demonstrate multithreading using Java.

Course (CS-336): Object oriented software engineering

After successfully completing this course, students will be able to:

- CO1: Recall fundamental principles underlying Object-Oriented software design like class, Object, Instance Polymorphism and inheritance;
- CO2: Give the original examples of basic and advance structural modelling things like class, objects;
- CO3: Explain basic behavioural things like use case diagram, interaction diagram and state chart diagram;
- CO4: Explain methods of object oriented analysis and object oriented designing;
- CO5: Use architectural modelling like component and deployment diagram;
- CO6: Define object oriented testing strategies.

Course (CS-346): Computer Graphics

- CO1: Define computer graphics, components of computer graphics, and Open GL,
- CO2: List input and output devices, graphical user interfaces in Open GL, graphics presentation,
- CO3: Explain raster scan graphics methods of line drawing algorithms, polygon filling algorithms, scan conversion,
- CO4: Describe basic transformation and window to viewport co-ordinate transformation. Setting window and viewport in OpenGL,
- CO5: Use line clipping and polygon clipping algorithms,
- CO6: Describe 3-D transformations hidden surface elimination methods.

M. Sc. (Computer Science)

Programme Outcomes :

After successfully completing M. Sc. (Computer Science) Programme students will be able to:

- PO1: Use creativity, critical thinking, and analysis and research skills to solve theoretical and real-world problems in computer science
- PO2: Work effectively both individually and as member of team to design and implement solution to computational problems.
- PO3: Discuss various algorithms and analysis of algorithms with its complexity
- PO4: Illustrate the concepts of networking and communication, and distributed computation, and security.
- PO5: Gain the knowledge about programming languages like PROLOG, LISP, Dot Net.
- PO6: Communicate effectively for different purposes and in different situations.
- PO7: Gain self-discipline in everyday aspects of life and work.
- PO8: Make use of Application fundamentals, including information management and intelligent applications.
- PO9: Apply current technical concepts and practices in the core information Technologies
- PO10: Apply the knowledge about software engineering fundamentals, including software analysis and design, evaluation and testing, and software engineering processes.

Programme Specific Outcomes

After successfully completing M. Sc. (Computer Science) Programme students will

- PSO1: Design and develop the software applications using programming languages
- PSO2: Apply knowledge of computing and mathematics appropriate to the discipline
- PSO3: Use knowledge of computer science in various computer domains
- PSO4: Pursue higher studies and research in the computer Science discipline.

Course Outcomes

M. Sc. (Computer Science) (Part – I)

Course CS-101: Principles of Programming Languages

- CO1: Summarize & Categorize Programming Language Spectrum;
- CO2: Discuss Functional & Logic-based language;
- CO3: Interpret the concepts of Object lifetime, Storage Management, Scope rules, binding rules and solve the problems using scope & binding rules;
- CO4: Summarize the various control flow alternatives;
- CO5: Illustrate the various data types & its implementations;
- CO6: Describe the fundamental concept of Subprogram & implementation of subprograms and solve the problems using parameter passing methods;
- CO7: Explain data abstraction & Object Oriented Features;
- CO8: Discuss Multiprocessor architecture and categories of concurrencies.

Course CS-102: Advanced Networking

After successfully completing this course, students will be able to:

- CO1: Recall the basic concepts of Networking;
- CO2: Discuss the Internet Layer. Routing and Transport Layer protocol;
- CO3: Describe the multimedia concepts and it's protocols;
- CO4: Explain the fundamental concepts of Cryptography and different algorithms;
- CO5: Interpret the Symmetric, Asymmetric key cryptography and digital certificate;
- CO6: Discuss internet security protocol.

Course CS-103: Distributed Database Concepts

After successfully completing this course, students will be able to:

- CO1: Describe the principles of distributed databases and what distinguishes them from centralized databases;
- CO2: Discuss the different architectures used in implementing distributed databases;
- CO3: Demonstrate how horizontal and vertical fragmentation work in dividing relations;
- CO4: Illustrate the allocation algorithms in distributing relation fragments among sites;
- CO5: Explain the techniques used in securing distributed database entities, such as views and authorization controls;
- CO6: Discuss the three known distributed query optimization algorithms namely, Distributed INGRES, R*, and SDD-1;
- CO7: Explain principle behind distributed concurrency control algorithms, especially the two-phase locking (2PL) and timestamp-based algorithms;
- CO8: Describe the deadlock problem that is associated with distributed transactions and the techniques used in detecting, preventing, and avoiding them.

Course CS-104: Design & Analysis of Algorithms

After successfully completing this course, students will be able to:

- CO1: Describe how to analyze the algorithms & estimate their best case, worst case & average case behaviour;
- CO2: Discuss divide and conquer design strategy and solve the problems using this strategy;
- CO3: Explain Greedy method and solve the problems using this method;
- CO4: Discuss Dynamic programming and solve the problems using this strategy;
- CO5: Interpret the concepts of Decrease and conquer strategy and solve the problems using this method;
- CO6: Discuss Backtracking and solve the problems using this method;
- CO7: Explain Branch and Bound Technique and solve the problems using this method;
- CO8: Describe Transform and conquer strategy and solve the problems using this method;
- CO9: Analyze & classify the different class of problems.

Course (CS-105): UNIX Network Programming

- CO1: Explain basic socket address structures and different conversion functions;
- CO2: Discuss UNIX systems programming, signals, forking, and unp libraries;
- CO3: Illustrate the simple TCP Client/Server applications using Posix C sockets library;

- CO4: Contrast I/O multiplexing models Client-Server Functions;
- CO5: Describe different Socket Options;
- CO6: Illustrate the simple UDP Client/Server applications using Posix C sockets library;
- CO7: Explain elementary name and address conversion functions;

Course (CS-201): Digital Image Processing

After successfully completing this course, students will be able to:

- CO1: Discuss basic image processing techniques for solving real problems;
- CO2: Explain the fundamental concepts of a digital image processing system;
- CO3: Describe various types of images, intensity transformations and spatial filtering;
- CO4: Classify the techniques for image enhancement and image restoration;
- CO5: Explain morphological image processing algorithms;
- CO6: Interpret image segmentation and representation techniques.

Course (CS- 202): Advanced Operating Systems

After successfully completing this course, students will be able to:

- CO1: Recall the functions of Operating System;
- CO2: Explain the system calls related to files and directory;
- CO3: Describe the process environment and it's relationship;
- CO4: Interpret the different memory management schemes;
- CO5: Discuss the system calls related to signals;
- CO6: Explain the thread management in windows operating system.

Course (CS-203): Data mining & Data Warehousing

After successfully completing this course, students will be able to:

- CO1: Interpret the basic concepts of data mining and its applications;
- CO2: Discuss data warehousing and its architecture;
- CO3: Explain various data mining techniques and solve the problem using those techniques;
- CO4: Describe classification and prediction algorithms and solve the problem using those techniques;
- CO5: Summarize the various accuracy measures;
- CO6: Discuss clustering algorithms and solve the problem using those techniques;
- CO7: Explain the advanced techniques such as text mining and web mining.

Course: CS-204 Project / CS-304 Project

After successfully completing this course, students will be able to:

- CO1: Describe the phases of Software development project life cycle;
- CO2: Apply the various project management tools and techniques;
- CO3: Implement software systems that meet specified design & performance requirements;
- CO4: Use Team Management to effectively design & implement the project;
- CO5: Demonstrate effective project execution & Control techniques that results in successful project.

Course (CS-205): Programming with Dot Net

After successfully completing this course, students will be able to:

CO1: Discuss Dot net framework;

- CO2: Explain various c# language features;
- CO3: Demonstrate window programming using different controls like Common Controls, Container Controls, Menus and Toolbars;
- CO4: Illustrate Data Access with file system data and ADO.net;
- CO5: Discuss web Programming, Web Services and dot net assemblies;
- CO6: Describe Web Request, Web Response, TCP Client, TCP Listener and GDI+ libraries;
- CO7: Discuss ASP.net Server Controls, Control Structures & Functions;
- CO8: Demonstrate Event Driven Programming and Post Back;
- CO9: Illustrate state management and session events;

Course (CS-206): Artificial Intelligence

After successfully completing this course, students will be able to:

- CO1: Describe problems, problem spaces & search for AI problems;
- CO2: Interpret heuristic search techniques;
- CO3: Express knowledge representation & reasoning using predicate logic;
- CO4: Explain knowledge representation using semantic network;
- CO5: Illustrate game playing & learning concepts.

Course: (CS-301) Software Metrics and Project Management

After successfully completing this course, students will be able to:

- CO1: Define the development phases of project life cycle;
- CO2: Describe the project integration management and their knowledge areas throughout the project life cycle;
- CO3: Explain the knowledge of various tools and techniques used for elements of Project management like Scope, Time, Cost, Quality, Human Resources, Communication, Risk and Procurement;
- CO4: Use of metrics in software project;
- CO5: Explain Software Reliability characteristics, tools and methods used for Software Reliability;
- CO6: Discuss the software process assessment models like Capability Maturity Model, TSP, PSP.

Course (CS-302): Mobile Computing

- CO1: Interpret the basic concepts of mobile computing & its applications;
- CO2: Discuss general concepts of multiplexing, modulation and spread spectrum;
- CO3: Describe specialized MAC for wireless environment and Compare SDMA, TDMA, FDMA & CDMA;
- CO4: Explain Mobile IP & different mobile routing protocols;
- CO5: Summarize the problems of Traditional TCP & Discuss Classical TCP improvements;
- CO6: Explain system architecture of GSM and various value added services;
- CO7: Discuss UMTS, UTRAN system architecture;
- CO8: Describe Wireless application protocol architecture;
- CO9: Discuss Introduction to Android Operating System, its architecture and features.

Course (CS-303): Soft Computing

After successfully completing this course, students will be able to:

- CO1: Illustrate the concept of Fuzzy sets, knowledge representation using fuzzy rules, Fuzzy Inference System, Fuzzy Logic and various operations on it;
- CO2: Discuss the fuzzy system simulation and classification;
- CO3: solve the problems using fuzzy arithmetic;
- CO4: Describe Artificial Neural Network and applications of it;
- CO5: Explain Genetic Algorithms and differentiate Genetic algorithms from Traditional methods.

Course (CS-305): Web Services

After successfully completing this course, students will be able to:

- CO1: Discuss standards and bind architecture of Web services;
- CO2: Demonstrate web service by using Java Language;
- CO3: Explain SOAP (Simple object access protocol);
- CO4: Describe WSDL (Web Services Description Language);
- CO5: Discuss various service models used in cloud computing;
- CO6: Illustrate case study based on cloud computing.

Course (CS-307): Functional Programming

After successfully completing this course, students will be able to:

- CO1: Interpret the concept of Python languages;
- CO2: Illustrate the concept of string, list, tuple, set and dictionary in python;
- CO3: discus the concept of files and directories in python;
- CO4: Explain the concept of object oriented concept in python;
- CO5: Describe concept of functional programming and varieties of functional programming language;
- CO6: Explain semantics of function language using precise formal specification;
- CO7: Describe different reduct.

Course: CS-401 Industrial Training Project

- CO1: Select comprehensive learning platform students can enhance their employ ability skills and become job ready along with real corporate exposure;
- CO2: Apply the theory knowledge to get hands-on experience in the field of computer science;
- CO3: Appreciate the ethical basis of professional practice in relevant industry;
- CO4: Describe with all the latest changes in technological world;
- CO5: Interpret options in career plans and goals.

